Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates.
نویسندگان
چکیده
We study the dynamic evolution of pixilation patterns of the liquid-ordered (Lo) phase in coexistence with the liquid-disordered phase in lipid multibilayers. The pixilation patterns were formed by imposing lattice patterns of localized high curvature on phase-separating multibilayers using curvature-patterned regions of an underlying support. The projected radius of underlying hemisphere-like features, that provided the local curvature, was varied from 60 nm to 100 nm and the square lattice spacing between the features was varied between 200 nm and 400 nm using standard electron (e) -beam lithography. Over time, the area fraction of the Lo phase on the patterned regions of the substrate decreased toward zero at room temperature. This apparent metastability of the pattern derives from the high line energy of a pixelation pattern where a Boltzmann distribution shows near zero equilibrium partitioning of the Lo phase in the patterned regions. Kinetic rate analysis identifies two pattern-dependent mechanisms that dominate the transition to zero Lo area fraction; diffusion limited dissolution of the Lo phase driven by an Ostwald ripening-type process or the cooperative formation of vesicles containing Lo phase lipids. Interestingly, we observed the spontaneous formation of tubules in the corners of the array due to the high local curvature applied to the membrane. Furthermore we show that it is possible to regenerate pixilation patterns on the curvature-patterned regions by cooling below room temperature. Regenerated area fractions are in agreement with a room-temperature composition of primarily Ld phase and the high degree of overlap with the original patterns is suggestive of fixed nucleation sites.
منابع مشابه
Micropatterned composite membranes of polymerized and fluid lipid bilayers.
Micropatterned composite membranes of polymerized and fluid lipid bilayers were constructed on solid substrates. Lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and subsequent removal of nonreacted monomers by a detergent solution (0.1 M sodium dodecyl sulfate (SDS)) yielded a patterned polymeric bil...
متن کاملContinuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The ...
متن کاملSeparation and Identification of Raft Associated Membrane Species Using a Patterned Supported lipid Bilayer extractor
New methods toward manipulation and study of membrane species within a lipid bilayer platform are desired because lipid bilayers are able to maintain native conformation and function of intrinsic membrane species. This report demonstrates design and use of a bilayer patterned device for separation, sorting, and categorization of membrane biomolecules based on their affinity for different co-exi...
متن کاملThe partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study.
The structure and composition of coexisting bilayer phases separated in binary mixtures of dipalmitoylphosphatidylcholine and cholesterol and ternary mixtures of equimolar proportions of dipalmitoyl- and dioleoylphosphatidycholines containing different proportions of cholesterol have been characterized by synchrotron X-ray diffraction methods. The liquid-ordered phase is distinguished from gel ...
متن کاملCharacterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy.
We report the application of confocal imaging and fluorescence correlation spectroscopy (FCS) to characterize chemically well-defined lipid bilayer models for biomembranes. Giant unilamellar vesicles of dilauroyl phosphatidylcholine/dipalmitoyl phosphatidylcholine (DLPC/DPPC)/cholesterol were imaged by confocal fluorescence microscopy with two fluorescent probes, 1, 1'-dieicosanyl-3,3,3',3'-tet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2013